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It is demonstrated that the basic stratification in a fluid region subject to thermal 
forcing may be predicted rather simply for a fairly wide class of boundary condi- 
tions. Explicit solutionsare derived in certain cases. Auseful experimentalmethod 
for maintaining a stratified system with arbitrarily specified vertical variation of 
density emerges from the analysis. A preliminary laboratory experiment has 
demonstrated the efficiency of this method. The restrictions on the validity of 
the theory involve a limitation on the thermal forcing of the fluid, which may be 
expressed as an upper limit on the thermal conductance of the boundary of the 
region. Furthermore, the buoyancy frequency characterizing the solution must 
be sufficiently large to give rise to a boundary-layer-type flow pattern. 

1. Introduction 
The present paper tackles the problem of determining the density field in a 

closed region of general shape (figure l), from the thermal and kinematic boundary 
conditions applied at the boundary of the region. We are concerned primarily 
with the steady-state fields, but the time-dependent problem is also discussed in 
order to determine the time scales involved. We limit our attention to situations 
in which the momentum balance is dominated by the buoyancy force, a t  least in 
the main part of the region. 

Although much work has been devoted to the field of stratified flow (for ex- 
ample, see Yih 1965), almost all of it has concentrated on the theory of perturba- 
tions on a prescribed stratification, while the problem of determining the basic 
stratification has been given little or no attention (as an example, Yih’s book 
contains no reference at all to this problem). There are, however, a few exceptions. 
Gill (1966) with approximate boundary-layer methods studied the density and 
flow fields in a rectangular region with specified temperature on the vertical walls, 
and McIntyre (1968) studied a similar problem in a rotating frame. A rotation 
dominated problem involving an unknown basic density field was also studied 
by Barcilon & Pedlosky (1967) in a rather different parameter regime in which the 
centrifugal force was the important ingredient. 

In  their analyses, both Gill and McIntyre were forced to make some ad hoc 
approximations. Part of their difficulty is attributable to the choice of perfectly 
conducting boundaries. This paper shows that if we do not insist on these, but 
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drive the fluid with boundaries of finite conductance, the problem becomes a 
good deal more tractable. At the same time it becomes more realistic, and leads 
to a powerful laboratory technique for producing any specified stratification. 

There are two types of situations in which the temperature distribution in a 
fluid system influenced by gravitation may be obtained in an obvious way. First 
we have the case when the heat balance is dominated by diffusion, the simplest 
case being a fluid region between a warm top and cold bottom, the top and bottom 
coinciding with geopotential surfaces. Secondly we have the case when the tem- 
perature is prescribed on all boundaries of the region but in such a way that 
boundary points on the same geopotential surface have the same temperature. 
In  this case diffusion may be arbitrarily weak (although not absent), and actually 
if it is ‘sufficiently’ weak the fluid temperature simply equals the boundary 
temperature at  the same geopotential surface. Some aspects of this problem 
(although formulated as a perturbation problem) have been discussed by Veronis 
(1967 a, b) .  

Obviously there exists a wide class of boundary conditions which give rise to a 
temperature distribution dominated by a stable stratification, although this 
stratification is not predictable as trivially as in the above examples. In  the present 
paper, part of this prediction problem is tackled. 

Outline of approach and main results 
111 $ 2  we derive the lowest-order equations governing the interior of the fluid 
region, under the constraint that the density variation is sufficiently large for the 
momentum balance to be dominated by the buoyancy force. This basic constraint 
may also be expressed as a requirement that the buoyancy frequency is much 
larger than other frequencies characterizing the system. The drastic (though 
not unexpected) consequenceof this assumption is that, in theinterior, the density 
as well as the vertical velocity is forced to be a function of vertical co-ordinate 
z and time t only. 

The degenerate behaviour of the interior requires the existence of boundary 
layers, which are analyzed in $ 3. From this analysis emerges a general condition 
for the boundary-layer equations to linearize (and reduce to the buoyancy- 
layer equations). Thus we must require that the maximum density variation 
across the boundary layer should be small when compared with the density varia- 
tion throughout the fluid. It is shown that this in general means that the boundary 
of the region has to be a su&ientlypoor conductor, but other possible cases exist, 
such as the one treated by Veronis (1967a, b ) .  

After establishing validity of the linear buoyancy-layer equations, we may 
express the boundary-layer transport in terms of the unknown interior fields 
and the boundary conditions. This relation is then used in 8 4 to close the interior 
problem. The result is a linear differential equation in z and t from which the 
interior density field pl(z, t )  may be determined. 

At the end of 8 4 we discuss briefly the transient behaviour of pI(z, t )  and point 
out the very important feature that the adjustment time to steady state may to 
some extent be controlled in an experiment, for example substantially reduced 
below the so-called diffusion time. 
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In $5 we apply the general results of $4 to a cylindrical region with axis per- 
pendicular to the gravitational force gk, and in $ 6  we consider a region with 
rectangular cross-section. The results of Q 6 have been checked with a preliminary 
experiment reported in $7.  In $8  finally, we summarize the restrictions on the 
analysis and discuss its range of validity. 

Carefully notice that in $ 2  and most of $ 3 ,  non-dimensional variables are used 
in the process of finding the lowest-order dynamical balances, while at  the end of 
3 3 and in 5 $ 4-8, we use dimensional variables in order to have closer contact with 
the physical characteristics of the system. 

2. The strongly stratified interior 

geneous fluid under gravity may be written 
Within the Boussinesq approximation the equations governing a non-homo- 

(2 . la)  

( 2 . l b )  

(2 . lc)  

where v is the velocity vector with components ( U ,  V ,  W )  and k the vector 
(0, 0, - 1) in the Cartesian co-ordinate system (x, y, z ) ,  p and p are deviations in 
density and pressure from the mean density pm and the associated hydrostatic 
pressure ( -pmgz + const.), I, and K are the diffusivities of momentum and density 
(i.e. temperature), and g is the gravitational acceleration. The fluid is bounded 
by a rigid surface S on which we require 

(2.2a) 

(2 .2b)  

where n is the inward unit normal to the boundary, while s and ,6 are known 
functions of time and position on the boundary. 

Equations (2.1) and (2.2) will now be non-dimensionalized with the following 
transformations : 

(2 .3a )  

t = Tt’ ,  (2 .3b )  

( U ,  V ,  W )  = U,( U’, V‘, W‘) ,  ( 2 . 3 ~ )  

( 2 . 3 d )  

(2 .3e)  

We assume that the scale ‘of density variation Q is also representative for the 
forcing field ,6, i.e. 

We also assume that L is known, and representative for the size of the container, 
while P ,  U, and r in general are unknown a priori. Furthermore, U, will be chosen 
as representative for the largest velocity in the fluid. (This will mean in general 
that IvI U, in the interior, since the largest velocity is found in the boundary 
layer; see $3.2 . )  

Q N P* (2.4) 
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Dropping the primes, we obtain 

~ , a p l a t + R , v . v p  = cr-lENV2p, 

v .v = 0, 

with boundary conditions v = o  

n . ~p = s ~ ( p  - P Q - ~ )  J 
where 6, = (7N)-l  

R N  = Uo L-l N-l ,  

EN = v L - ~ N - ~ ,  

( 2 . 5 a )  

(2 .5b)  

( 2 . 5 ~ )  

(2 .5d )  

(2 .5e)  

(2 .6a)  

(2 .6b)  

( 2 . 6 ~ )  

C = YK-’. ( 2 . 6 d )  

The parameter N may be called characteristic buoyancy frequency and is defined 

N 2  = Qglp,L. (2 .6e )  by 

We are interested here in the stratification-dominated rbgime characterized by 

13 = max (6,, RN, EN)  @ 1, 

f7.V 1. 

(2 .7a )  

(2 .7b)  

Under this constraint the momentum equation (2.5a) becomes hydrostatic to 
lowest order in 6, 

( - P/QgL) V p  + p k  = 0. ( 2 . 8 ~ )  

For consistency we require 

Taking the curl of (2 .8a)  we obtain 

P = QgL. (2.8b) 

V p x k  = 0. ( 2 . 8 ~ )  

If we limit our attention to regions such that each horizontal cross-section is a 
connected surface, ( 2 . 8 ~ )  is equivalent to 

P = P ( Z ,  t ) .  ( 2 . 9 ~ )  

When ( 2 . 9 a )  is introduced into the diffusion equation (2.Eib), we obtain 

(2.9 b) 

which requires w = W(z,t) .  ( 2 . 9 ~ )  

Equations (2 .9)  togetherwith continuityare the lowest-order equations governing 
a fluid system satisfying conditions (2 .7 ) .  It seems convenient to call such a system 
‘strongly stratified’. This definition bears a close correspondence to the concept 
‘rapidly rotating ’ and its mathematical expression in the Taylor-Proudman 
theorem. 
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Obviously, velocity and density fields constrained by (2 .9)  canonlysatisfyvery 
special boundary conditions. We expect accordingly that our scaling assumptions 
will break down somewhere in the region. Assuming this breakdown to occur 
close to the boundaries, we will now try a boundary-layer approach to the prob- 
lem. 

3. The boundary layer 
Let us assume that the solution consists of two parts according to 

q5 = d'+9", ( 3 . l a )  

where q5 represents any one of the dependent variables. Furthermore, is 
assumed to satisfy equations (2.5a-c) and to have the scale properties postulated 
when deriving equations (2 .9 ) .  Thus by definition (2 .9)  are the lowest-order 
equations for qV. q5B, on the other hand, is assumed to be negligibly small every- 
where except in a thin layer close to the boundary. While varying with the 
interior scale L along the boundary, q5B is thus assumed to vary much faster in a 
direction perpendicular to the boundary. Suppose provisionally that this varia- 
tion is characterized by a single scale EL where E < 1. 

If equations ( 2 . 5 ~ - c )  are written symbolically as 

P(q5) = 0, 

9(f+ q5B) - P(q5I) = 0. 

we have by definition P(q5I) = 9(q5z + q5B) = 0, 
and consequently 

(3 . lb)  

( 3 . 1 ~ )  

( 3 . l d )  

Equation (3.1 d )  will now be written in a local unstretched Cartesian co-ordinate 
system (t, 7,[) attached to the boundary and oriented in such a way that the 
axis coincides with the local inward normal to the boundary. For the moment we 
assume that the 6 axis is not vertical, that the 7 axis is perpendicular to the gravi- 
tational force gk, and that the axis has a positive upward component (see figure 
1). The co-ordinates are scaled by L as in ( 2 . 3 ~ ~ ) .  

We obtain in non-dimensional form 

(3 .2a)  

(3 .2b)  

( 3 . 2 ~ )  

auB at+ ~ W B  -+-+- = 0, a t  a7 ac 
where (kt, 0, kc) is the local representation of the vector k and 

(u, 21, w) = (UI, 211, W I )  + (UB, V B ,  W B )  

(3.2e) 
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represents the velocity v in the local co-ordinate system (&r, 5). The interaction 
terms in (3 .2 )  are defined by 

Jv; = VB.VUB+VB.VU~+V~.VUB, 

N7 = VB.VvB+vB.Vv~+V=.VVB, 

.r/'s = VB.VWB+VB.Vu?+V~.VZLFB, 

JV; = vB .VpB+vB.Vp~+vI .Vp~ .  

FI'IGUI~E 1. Illustration of the geometry of the general problem dealt with in $0 2-4. The local 
co-ordinate system (&v, 5)  is so defined that the 5 axis coincides with the inward normd to 
the boundary, the 71 axis is perpendicular to the gravity f2rce gk, and the axis has apositive 
upward component. The imposed outside temperature T (corresponding to fluid density i), 
the wall thickness d as well as the conductivity K is allowed to vary along the boundaqr. It 
should be remembered, however, that the correspondence between the illustrated arrange- 
ment, and the mathematical problem is good only when d < L. 

The boundary conditions ( 2 . 5 d ,  e )  are required to be satisfied by the complete 
solution # I +  $B. We have for the local form of the boundary condition 

v'+ V B  = 0 ( 3 . 3 a )  

(3 .3b )  

Our aim now is to solve (3 .2)  for #B,  subject to (3 .3 ) ,  considering @as known. We 
can then express $B in terms of r$z, making it possible to eliminate $B from the 
boundary condition (3 .3) ,  which would close the problem for $1. 
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To obtain a consistent lowest-order set of equations from (3.2) and (3.3) 
we shall make use of conditions (2.4) and (2.7) together with the postulated pro- 
perties of q5B. In  the neighbourhood of the boundary point (<, 7, g) = 0 these may 

( 3 . 4 ~ )  
be expressed as a -- p N 6-1 q5B, 

(3.4b) 

where € <  1. (3.4c) 

3.1. The restriction on the thermal boundary condition 
However, an essential difficulty is associated with the non-linear :term Np in 
the heat equation (3.2d). The usual way to avoid this difficulty is to  limit the 
study to small deviations from a given] stratification, thereby giving up any 
attempt to predict the main density field. Technically this means that the linear- 
ization and consequent simplification is performed before the splitting of the 
dependent variables into interior and boundary-layer parts. In  the present 
approach we simplify the equations for #I and q5B separately, starting with the 
complete non-linear equations (3.1 c)  and (3.1 d )  respectively. As we shall find, 
this can be done without giving up the attempt to predict the main density field 
P I .  The lowest-order equations for $I have already been derived (2.9); what 
remains is the simplification of (3 . ld) ,  i.e. of (3.2). 

pB< 1, (3.5) 

J V ~  simplifies to Mp = V”.Vp’. (3.6) 

It turns out that if 

This form of J”, though still expressing the interaction between two unknown 
fields, is linear with respect to $B, which is sufficient for this part of the problem 
to be tractable. Equation (3.5) will therefore be adopted as an additional restric- 
tion on our analysis. Observe, however, that justification of (3.6) also requires 
some knowledge of the relative order of magnitude of the velocity components 
IS given by (3.11) below. 

Before making use of ( 3 4 ,  we will examine the restrictions that have to be 
imposed on the boundary condition in order that (3.5) be satisfied. The boundary 
condition on p (3.36) may be written 

a 
( ~ - S L ) ~ B = ~ L ( ~ I - / ~ Q - ~ ) - - ~ I  ac at (.g,T,g) = 0. (3.7) 

From (3.4) and our previous assumption that PQ-’ N p I  N 1, we obtain the follow- 
ing estimates a 

pI-jjQ-1 N 1, a g p I  5 1, 
a - p B  N +pB, 

ac 
which we introduce in (3.7), obtaining 

Remembering that a < 1 it follows that pB < 1 if 

which is the required restriction on the thermal boundary condition. 

p B .  max ( c l ,  sL) 5 max (sL, 1). 

SL < 8-1, 
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In  order to understand the physical meaning of (3.9), we may think of the 
boundary condition (3.3b) as realized by a wall of thickness d and conductivity 
I?, outside which the temperature is held at  the value f corresponding to fluid 
density p^ (see figure 1) .  If d is small enough compared with the dimensions of the 
region, so that the tangential heat flux in the wall may be neglected, we have 

s = $ / l i d ,  (3.1 Oa) approximately 

where K is the thermal conductivity of the working fluid. Thus (3.9) may be 

d* = d K / R  > EL. (3.10 b )  written as 

Numerical values of -the wall 'thermal thickness' d* and the boundary-layer 
thickness EL are given in table 1 for some cases typical for laboratory application. 

' Thermal thickness' of 
boundary made of 

Fluid 

Boundary -layer thickness 
EL = ( ~ v / N ) a  (em) 

3.2 0.11 65 
0.62 0.20 11.7 

Water Alcohol Mercury 

0.11 0.073 0.16 

TABLE 1. Typical values of boundary-layer thickness and 'thermal thickness' d* of the 
boundary for various combinations of fluids and wall materials. Cases when EL < d* (i.e. 
SL < E$) are enclosed by a frame. The buoyancy frequency has been based on a temperature 
gradient of about 0.5 OC/cm, and the wall thickness d was chosen to be 1 cm. K and l? are 
the thermal conductivities (e.g. measured in w/m. "C) of fluid and wall material respectively 

3.2. The buoyancy layer 

Before proceeding to the derivation of the lowest-order boundary-layer equations, 
we now have to settle the definition of R, = U,N-lL-l. Anticipating that the 
largest velocity in the fluid is the boundary-layer component represented by uB, 

we choose U, to be representative of this velocity component. Thus we have 

CUB - 1, (3.1 1 a)  

and (UI, VI, d) 5 1. (3.1 1 b )  

Furthermore, the continuity equation (3.2e) and the scale properties (3.4) imply 

W 3  5 E ,  (3.1 1 c )  

which in view of the boundary condition (3.3a) and the scale property of W I  

(3.11d) 
means that WISE 

at least in the boundary-layer region. From (3.11a-d), the scale properties (3.4), 
and the previous assumptions pB < 1 and p1 N 1,  it follows now that to lowest 

apI apI Np = 'UB-+wB-. 
at- ar 

order Np may be written 
(3.1 1 e )  
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It is essential that apI/at N 1 for (3.11 e) to be valid. This, however, follows from 
apI/az w 1 (see $2), when the [ axis is not vertical as we have assumed. 

Imposing the additional restriction 

8, < EN€-', (3.11f) 
the first term in the heat equation ( 3 . 2 4  becomes negligibly small compared with 
the diffusion term. (In view of the result 8 N E$ found below, (3.11f) wi l l  be 
implied by the already imposed condition on SN,  (2.7).) 

Utilizing the boundary-layer property of p B  in order to simplify the Laplacian, 
we thus obtain the lowest-order approximation for (3.2d) 

( 3 . 1 2 ~ )  

We now apply conditions (2.7), the scale properties of as well as q5B, and the 
assumption that the dissipative processes enter the basic balance, to the remain- 
ing boundary-layer equations (3.2). To lowest order we obtain 

(3.12b) 

(3.12 c) 

(3.12d) 

(3.12 e) 

Equations (3.12) become internally consistent if 

E E L  ( 3 . 1 3 ~ )  

P B  R N ,  (3.13b) 

PB 5 R,. (3.13 c) 

Combining (3.13) with our previous estimate of p B  (3.8) and condition (3.9), we 

obtain pB N R N  5 Ekmax (sL, 1). (3.14) 

Equations (3.12) may be further simplified by taking into account the definition 
that q5B is non-zero only in the boundary layer 

lim q5B = 0, (3.15) 

expressed by equation (2.9), in particular the 
e-1 g-00 

and the lowest-order properties of 
fact that apr/aq = 0. We obtain in dimensional form 

( 3 . 1 6 ~ )  

(3.16 b) 

( 3 . 1 6 ~ )  
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Equations (3.16a, 6) represent a closed system of ordinary differential equations 
for u B  and pB. Together with the dimensional form of the boundary condition 
(3.3), this system may be solved in terms of uz, pz, and the local values of s and j3. 
Note that, in consistency with the boundary-layer approximation, apr/at should 
be considered to be independent of 5, and replaced by (apl/ag)b=o, while integra- 
ting the boundary-layer equations (3.16). 

Equations (3.16) are equivalent to the ' buoyancy-layer ' equations derived by 
Veronis (1967 a) ,  although they are derived here under substantially more general 
conditions. 

Equations (3.16a, 6) have solutions of the (dimensional) form 

where 

(3.17 a)  

(3.176) 

( 3 . 1 7 ~ )  

(3.17d) 

These solutions have the postulated decay property (3.15) and the scale property 
( 3 . 4 ~ )  except at  singular points where k, apz/a[ vanishes. The problem connected 
with these points is very similar to the problem in rapidly rotating fluids, where 
the Ekman layer becomes (formally) infinitely thick on vertical boundaries. By 
analogy we can expect these singularities to have only a passive, local significance 
(e.g. see Stewartson 1966). Here we restrict ourselves to confirming this in the 
particuIar but typical examples discussed in $55 and 6. The unknown constants 
in (3.17) may be determined, making use of the dimensional form of the bound- 
ary condition (3.3). 

Having now established the existence of an appropriate boundary-layer 
solution, its explicit form will not be needed any more, since in the next section 
it will turn out that we can use a more direct approach to the closure of our basic 
'interior problem'. 

4. The p1 equation 
Our next task is to derive closed equations for the interior fields, making use of 

both the lowest-order properties of and qP (derived in $92 and 3) and the 
boundary conditions (3.3). In  this and following sections we will use only dimen- 
sional variables, without change of notation. The simultaneous use of two dif- 
ferent co-ordinate systems may be a cause of confusion. Observe, therefore, the 
notation ( U ,  V ,  W )  for the velocity in the system (z, y, x )  oriented with the z axis 
parallel to the gravitational force and (u, v, w) for the velocity in the (t, 7, [) 
system. In dimensional form our lowest-order equations become : 
interior part of the solution 

P' = P'b, t ) ,  ( 4 . 1 ~ )  

WI = Iyl(2, t ) ,  (4.16) 
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boundary-layer part 

657 

( 4 . 1 ~ )  

( 4 . 2 ~ )  

(4.2b) 

together with the boundary condition for the complete solution 

From (4.1) and (4.2) the continuity equation has been omitted. Instead we add 
a continuity requirement of the form 

MT(z , t )  = 0, (4.4) 

where M T  represents the total volume flow through a horizontal surface at 
height z. 

M T  is composed of two parts according to 

MT = A(z)  WZ(z, t )  + MB(z, t ) ,  (4.5) 

where A ( z )  is the horizontal surface area occupied by the fluid region at  height 
z, and M B  is the total transport carried by the boundary layer through the 
same surface. M B  may be expressed in terms of uB according to 

where $ d l  represents a line integral around the horizontal surface with area 
A (2) * 

Integrating equation (4.2 b)  with respect tog, utilizing (3.15), we obtain 

In  view of (3.4) and (3.5) the thermal boundary condition takes on the approxi- 
mate form 

Introducing (4.8) in (4.7), we obtain 

Since pz depends only on (z,  t ) ,  apz/a[ and apI/ag are completely determined by 
8pIlaz and the slope of the boundary. If we define an angle 8, - &r < 8 f in, such 

42 F L M  48 
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that 8 + 8. is the angle between the inward normal to the boundary and the posi- 
tive zaxis (see figure l), we have 

-- aP' aPr 
az ' ag - cose- 

When (4.9) and (4.10) are introduced into (4.6) we obtain 

( 4 . 1 0 ~ )  

(4. lob) 

(4.11) 

Observe that pI and apI/az are constant along the path of integration and may be 
moved outside the integral sign. 

Using the continuity requirement (4.4), we can now express the vertical 
velocity in the diffusion equation (4.1 c) in terms of p' and thereby produce a 
single equation forpIalone. From (4.4), (4.5) and (4.11), we obtain 

where we have made use of the identity 

dA 
tanOdl= -- f dz a 

When (4.12) is introduced in (4.1 c) we obtain the required equation for pI 

which may also be written 

where 

(4.12) 

(4.13) 

( 4 . 1 4 ~ )  

(4.14b) 

( 4 . 1 4 ~ )  

It is remarkable that because of the appearance of the factor (apI/az)-l in the 
expression (4.12) for WI, elimination of WI has resulted in a linear equation for 

The foregoing ideas will be illustrated by means of two specific examples in 
$55 and 6. Here we will only point out a few important properties of equations 
(4.14). 

4.1. The case 1 < SL -g E& 
Estimating the terms in (4.14b) we find that when SL % 1, the steady solution 

PI .  

degenerates to 
(4.15) 

By comparison with (4.11) we find that with the same degree of approximation 

MB = 0. (4.16) 
this is equivalent to 
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Thus when SL is large, the net boundary-layer flux through a horizontal surface 
must vanish. Note that p I  is thereby determined for each level individually. Com- 
plications associated with this degeneracy are discussed in 3 6.  

4.2.  Adjustment time 

The time r required for the density field to approach steady state may be deter- 
mined by assuming balance between apz/at and the largest of the other terms in 

L2 L2 1 
(4.14b).  Weobtain- 

r - min (7, --) KSL * (4.1 7 a)  

Thus, when SL is large the adjustment time to steady state i s  small compared with the 
diffusion time L ~ / K  just as in the linearized problems discussed e.g. by Veronis 
(1967a, b) .  Needless to say this property is exceedingly valuable in experimental 
work with stratified fluids. 

In  terms of the non-dimensional parameter a,, ( 4 . 1 7 ~ )  becomes 

8, - E,max(l,sL). (4.17 b )  

Note that (4.17 b )  is consistent with the previous assumption that 8, < 1 .  

5. First example: region with smooth cross-section 
Let us apply (4.14) to the following region (see figure 2) 

x2 + z2 < R2, ( 5 . l a )  

0 < y < L,. ( 5 . l b )  

8, defined as inS4, is the angle between a normal to the boundary and a horizontal 
plane. If z is the height at which this normal intersects the boundary we have in 
this case a unique relation between 8 and z given by 

where 

(5.20,) 

(5 .2b)  

The parameters j3 and s in the boundary condition are chosen as (see figure 2) 

j3 = -&sin(B+asgnx) ( 5 . 3 ~ )  

s = so = constant J (5 .3b)  
1 on X2+22=R2, 

(5.3c) 

( 5 . 3 4  

This example is chosen because it illustrates well the behaviour of (4.14) when 
applied to regions with smooth shape. 

Introducing (5 .3)  into ( 4 . 1 4 ~ )  we obtain 

2 K L y  Sn - 2KL, So 
B(2) = - C(2) = Q sin 8 cos a. 

A cos 0’ A cos 0 

Furthermore, A and d A / d z  may be written 

( 5 . 4 4  

A = 2 4 ,  R cos e, d A p  = - 2 4  tan e. (5.4b) 
42-2 



660 G. Walin. 

Introducing (5.4) into (4.14) we obtain 

(5.5) 
apI a2pI 1~s in8  apI KS d K S ~  sin f3 cos a 

Rcos28 * 
-- K-+-- 

This equation is singular at the end-points z = -C R (6 = & Sn). In  such cases 
(e.g. Petrovsky 1954, p. 163) the appropriate boundary condition is generally 8 

+o = - 
at a22 ~ C o s 2 e  a2 ~ C o s 2 e  

FIGURE 2. Illustrations of isotherms and boundary-layer flow obtained in the example 
treated in $5. The temperature outside the cylinder is prescribed and increases with con- 
stant rate in a direction perpendicular to the cylinder axis and making an angle a: with the 
vertical. The temperature in the main body of the fluid increases in a vertical direction with 
a rate given by (5.10). This temperature gradient approaches the outside vertical gradient 
when the wall thickness decreases. The illustrated solution is acceptable only if it is gravita- 
tionally stable; in this case if Q > 0, 0 C u < &r. 

regularity condition. Since we expect a physical solution to have finite heat 
flux and flux convergence, we must require at  least 

apI/az finite. (5.6) 

Then, close to z = rt: R the most differentiated terms (in both space and time) 
disappear, and (5.5) degenerates to 

sin 8 apI/az + sopI = - so Q sin 8 cos a. (5.7) 

Let us express (5 .6 )  in terms of 8. Since 

ap'lae = R COB e apIpz, 

apIlae = o at  e = +T. 

we obtain from (5.6) the homogeneous boundary condition 
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Equation (5.5) becomes in terms of 8 

A steady solution satisfying (5.8) and (5.9) is immediately found as 

Rs, z 
1 + Rs, l+Rs,R 

cosasinB= -&-- cos a. PI = -&- R S O  (5.10) 

Furthermore, we always have Rs, > 0 since the thermal conductivity of the 
wall is positive, which means that the homogeneous steady-state problem has 
no solution different from zero. Consequently (5.10) represents a unique steady 
solution. 

The boundary-layer transport m for unit length of the cylinder (defined as 
positive upwards) is obtained from (4.9) and becomes 

(5.11) 

For this particular choice of boundary conditions the transport carried around 
the container by the boundary layer is constant and the interior is motionless in 
the steady state. This is so irrespective of whether Rs, % 1 or not, since in this 
particular case the interior diffusive term, K ( ~ ~ P ' / ~ Z ~ )  in (4.1 c), happens to be zero. 
Equation (5.10) is illustrated schematically in figure 2, for the case a = 30" 
and Rs, 9 1. 

5.1. The singular points z = +_ R 
We now have to discuss the behaviour of our system in the vicinity of the singu- 
lar points z = & R. From (3.17), we find that the boundary-layer theory breaks 
down at  these points, formally giving rise to infinite boundary-layer thickness. 
The breakdown may also be described in the following way. A finite distance from 
the singular point the primary object of the boundary layer is to 'help ' the interior 
density field to satisfy the thermal boundary condition. When approaching a 
singular point, the boundary layer loses the ability to do this, since pB+ 0 
unless at  the same time m -+ co, which is not physically acceptable. Accordingly, 
the interior density distribution has to satisfy the boundary condition by itself 
at these points. The degenerate form (5.7) that the p I  equation takes when 
approaching z = f R is identical to the boundary condition at these points. 
Accordingly, a solution to (5.5), (time dependent or steady) automatically 
satisfies the thermal boundary condition at z = k R. This behaviour suggests 
that the singularities play a passive role only. 

The boundary layer does not disappear completely at the singularity, since a 
finite boundary-layer transport has to be carried across the singular point. The 
important question is whether the solution in the rest of the container depends 
on the behaviour of the boundary layer in the vicinity of the singular point. We 
could derive the equations governing the somewhat thicker boundary layer that 
appears in the vicinity of z = rt R (specifically, cos 0 5 Eh; the thickness is EEL), 
essentially as in Stewartson (1966). Like Stewartson we shall not attempt an 
explicit solution since these equations cannot be integrated locally in the same 
way as the buoyancy-layer equations. An order-of-magnitude analysis shows that 

m = Ksgnx(1 +Rs,) tana. 
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the additional density anomaly required to overcome viscosity and drive the 
boundary-layer transport across the singular point is small ecough to be negligible 
when introduced in the boundary condition, so that the interaction with pI may 
be neglected. The dynamics is similar to the case with a finite horizontal surface 
treated in the next section. Whenever the container has a curved top and bottom 
equation (4.14) degenerates to the thermal boundary condition in the vicinity 
of the singular points, and so the same reasoning may be applied to all such con- 
tainers. 

5.2. Assumption of stable strati$cation 

Weinbaum (1964) treated a problem formally very similar in appearance to the 
one we have analyzed in this section. He, however, assumes that there is a large- 
scale vortex in the interior, which rules out the possibility of a stable stratifica- 
tion. Since in the present paper we make the opposite assumption one might 
expect contradictoryresults. This is not the case, however, since we cover different 
ranges of boundary conditions. Thus, when the present analysis predicts an 
unstable density distribution (e.g. when in < 01 < T ,  Q > 0) the solution has to 
be rejected (see Q 8). I n  such cases an approach similar to Weinbaum’s, assuming 
an essentially homogeneous interior is probably correct. The question whether 
in similar situations the appropriate solution contains a stratified core or an 
essentially homogeneous vortex has been discussed in a recent paper by Brooks 
& Ostrach (1970). 

6. Second example : region with rectangular cross-section 

Next we shall apply equation (4.14) to the region (see figures 3 and 4 )  

6.1. Statement of problem 

O < X < L ,  

O < y < L ,  

O < z < H .  

The parameters s and j3 in the boundary condition are given by 

(s1,j3J at x = 0 

(s2,ph2) at 2 = L I 

( 6 . 1 ~ )  

( 6 . l b )  

( 6 . 1 ~ )  

(6.2) 

where sB, bB, sT, &, are constants and s,, j3, (n = 1 ,  .. ., 4 )  are restricted for con- 
venience to be functions of z only. This may be realized, for example, with vertical 
walls of varying thickness as illustrated in figure 4 .  Then from ( 4 . 1 4 ~ )  
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FIGURE 3. The temperature and flow field between two horizontal conducting plates held at 
different temperatures. The outside of the vertical boundaries are held at  an intermediate 
(environmental) temperature. Inorder to obtainalinear variation of temperaturein the fluid, 
the vertical boundaries have to be extremely well insulated (6.20). 

FIGURE 4. Illustration of the different regions obtained when the thermal contact through 
the vertical boundaries is good in the sense expressed by (6.22). In region I heat diffusion 
has no influence on the temperature field which is determined for each level individually 
by the constraint that the total boundary-layer flow through each horizontal plane must 
vanish. Region I1 serves to match the temperature field in region I to the boundary condition 
on the horizontal plates while in region 111, the circulation induced in region I1 and in the 
vertical boundary layers are tied together. 
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and equation (4.14 b)  becomes 

Equation (6.3) is regular in the whole interval and boundary conditions on p' 
have to be specified at  z = (0, H ) .  

First we discuss these boundary conditions, and then illustrate with two speci- 
fic cases of (6.2) which have particular relevance to laboratory experiments. 

6.2. The horizontal Eb boundary layer, and the conditions under 
which their inJluence i s  negligible 

The boundary conditions on the complete solutionpI+pB are given by 

( 6 . 4 ~ )  

(6.4b) 

Since the theory for the buoyancy layer breaks down when the boundary is 
horizontal, we are forced to make a special analysis in order to eliminate pB from 
(6.4). As pointed out by Veronis (1967a), thehorizontal boundarylayers areanalo- 
gous to the Stewartson E* layer occurring in homogeneous rotating fluids. (There 
may also be thicker layers analogous to the Stewartson Ealayer but any suchlayers 
are already included in (4.14) and so need no separate discussion.) The governing 
boundary-layer equations may be found as in 5 3. In  this case, however, the heat 
equation may not be linearized in the same way as on non-horizontal boundaries 
since the leading term in v .  VpI (i.e. uB apI/aE) is identically zero. 

Implicit in (6.2) there is an important assumption, namely that the boundary 
condition on each horizontal boundary is independent of position. This condition 
makes it possible though not necessary for pI  to satisfy (6.4) without assistance 
from pB. Furthermore, since in this case the horizontal boundary layer is forced 
only by the flux coming from the buoyancy layers and not by the boundary 
condition, we have no reason to restrict the values of sB and sT in (6.4). Thus 
we do not exclude perfectly conducting horizontal boundaries. If the boundary 
condition were allowed to vary along the horizontal boundaries, pB would be 
important in (6.4), and thus the boundary condition to be applied on px would 
in general be unknown without a complete analysis of the boundary layer. 

We shall now try to find out whenpB may, however, simply be ignored in (6.4). 

If 8, < Eb, sL < E&*, (6.5) 
we obtain the following (dimensional) boundary-layer equations 

(6.6a) 

(6.6b) 

( 6 . 6 ~ )  
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V . V B =  0, (6.64 

For consistency it is required that 
PB - m 2  TBHp', 

(6.6e) 

( 6 . 7 ~ )  

EH (6.7b) 

where eHL is the boundary-layer thickness, and m N s,LUB is the flux in the 
boundary layer. 

A scaling analysis based on (6.6) is valid if the neglected contributions are a t  
most comparable to the terms retained in (6.6). This means that (6.7) remain 
valid within the much weaker conditions 

8,s Eb, sL ;5 E;ja. (6.8) 

The horizontal boundary-layer flux has to match with the flux in the buoyancy 
layer and thus we obtain from (4.9) 

where 

m - s ~ L K ,  
sv - maxs, (n = 1, ..., 4). 

(If the sidewalls were not vertical (6.9) would be m N Kmax (svL, l).) 
In  order that p B  be negligible in (6.4) we must have 

pB < p I  when s,L 2 ssl, (6 .10~)  

or sglpB < sH LpI when sgl 2 sH L 2 1, (6.10b) 

or eglpB < pI when 1 2 s ~ I L ,  (6 .10~)  
where sH - ( s ~ ,  sT).  

Comparing (6.10) with the previous estimate of pB as deduced from (6.7) and 
(6.9) we findthat (6.10)issatisfiedunder (6.8) aslong ass, 2 sV,i.e.whenthetop 
and the bottom conduct at least as well as the sidewalls. When sH < sy, however, 
we must require the stronger condition (6.5) to be valid. 

We shall not carry the analysis of (6.6) any further, but accept that when (6.8), 
or (6.5) when sH < sv, is violated, we do not know the proper boundary condition 
for pI  at z = (0, H ) .  Under such conditions, not only is (6.10) not true, but the 
boundary-layer equations are necessarily non-linear. 

The consequences of this lack of knowledge are not, however, too serious, since, 
as will appear below, p I  is unaffected by the boundary condition a t  z = (0, H ) ,  
in the main part of the region (i.e. region I as illustrated in figure a), when svL 
is large. From now on the boundary condition on pr will be taken as 

a t  z = 0, (6.1 1 a)  

-- a' - - sT(pl-pF)  at z = H .  (6.11b) 

assuming either (6.8) with sH 2 sv, or (6.5),  or svL 4 1 with attention confined to 
region I of figure 4. 

az 



666 G. Walin 

6.3. Stratification due to an  applied vertical temperature contrast 

The classical way to produce a stratified fluid system is to apply different tem- 
perature to the top and bottom of a container and consider all other boundaries 
thermally insulated. We can now treat this case in a realistic way, allowing all 
boundaries to have finite conductivity, and thereby conclude how well the ' side- 
walls ' must be insulated for the classical approach to be useful. We shall find 
((6.20) below) that it is necessary among other things that the thermal thickness 
d* = K d / B  of the sidewalls i s  much larger than the overall dimensions of theJEuid 
region; see table 1. 

Let us consider the following special case of (6.2) (illustrated in figure 3) 

(sa1Pa) = (+,PhV), (n=  1 , . . . , 4 ) ,  (6.12) 

where sv and PV are constant. In  this case (6.3) becomes 

(6.13) 

Equation (6.13) subject to the boundary conditions (6.1 1) has the following 

(6.14) 
steady solution 

p I  = ,&+ C, exp ( - ax) + C,expa(z - H), 

where a = 2(so/L)h, (6.15 a )  

and C, is obtained from the expression for C, by simply exchanging the indices 

(6.16) 
Band T. If 

equation (6.15b) is approximated by 

a < sH,  

(6.17) 

which is the form obtained from the boundary conditions p r  = PB at z = 0 and 
p I  = PT at x = H. Consequently (6.16) is the condition that allows the top and 
bottom boundaries to be considered good conductors. 

Introduction of (6.17) into (6.14) and expansion for small aH yields 

(6.18) 

Thus if aH < 1, (6.19) 

the solution degenerates to the ideal solution corresponding to insulated side- 
walls and conducting top and bottom, Consequently (6.16) and (6.19) are the 
necessary conditions for producing a linear stratification with a ' conventional ' 
experimental set up. The experimental difficulty is connected primarily with 
(6.19). Making use of (3.10) and ( 6 . 1 5 ~ )  we may write (6.19) as 

d" = d K / B  9 4H2/L.  (6.20) 
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In  the opposite (more realistic) case when aH B 1 the solution (6.14) degenerates 
to pI  = Pv everywhere except in regions of boundary-layer character close to 

If, simultaneously, a<s,, a H B 1 ,  (6.21a) 
z = (0,  H ) .  

the steady solution simplifies to 

p r =  &+(&-&)exp( -az )+(&-&)expa(z -H) .  (6.21b) 

The density field and the associated circulation in this case are illustrated in 
figure 3.  The vanishing of apI/az in part of the interior means of course that our 
scale analysis breaks down. This, however, does not invalidate the prediction for 
pr(z),  since where apI/az vanishes the strength of the buoyancy layer vanishes as 
well. 

6.4.  General results for second example, when 1 < svL 4 Es* 
Let us now discuss the system defined by (6.3) and (6.11) in more generality. Since 
(6.3) contains non-constant coefficients, we cannot solve the most general case 
explicitly. However, under the restriction 

SVLB 1, (6.22) 

the steady solution may be approximated by 

P I =  P;+p$+pi?, (6.23a) 

where only the first term is significant throughout most of the interior, and is 

Formally (pf3, p$) satisfy the following equations 

subject to the boundary conditions 

(6.233) 

( 6 . 2 3 ~ )  

(6.23d) 

(6.23e) 

(6.23.f 1 
p$+O when z + w ,  (6 .23d  

a 
az 

--p& = ~tp(p ;+~$- , i?F)  at z = H ,  

p$+O when H - z + w .  (6.23h) 

Equations (6.23) represents a boundary-layer approach to the interior problem. 
This 'interior boundary layer' corresponds to the E b  layer found by Veronis 
(1967a),  but because of our besic assumption svL < Ez3, the thickness is here 
independent of E,. 
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The boundary-layer approximations we must make to obtain (6 .23)  are: 
(i) The heat diffusion connected with pi ,  i.e. the contribution - Ka2pi/az2 to the 

second term in (6 .3 ) ,  is neglected. (ii) The variable coefficient C. s, is replaced by 

its value on the upper (lower) boundary when multiplyingp$(p&) in (6.3). (iii) p$ 
is neglected in the lower and p i  in the upper boundary condition. (iv) @;/ax 
is neglected in the boundary conditions. (However, we retain ap$/az and ap$/az 
to allow formally for possibilities such as s, 5 (s,/L)*.) 

These approximations are justified when p i  varies only on the length scale L, 
and (p$,p$) decays on a length scale short compared with L when leaving the 
upper and lower boundaries. From ( 6 . 2 3 ~  and d )  we find that this is true when 
(6.22) is satisfied. 

(p$,p$) may be obtained from (6 .23)  by elementary methods. For illustrative 
purposes we will here write down the solution in the case where s, and sT are 
sufficiently large for the top and bottom boundaries to be considered good conduc- 

(6 .24a)  
tors. We obtain 

(6 .24b)  

(: 1 

P i  = (b,-pi(z = O))exp(-a,z), 

p$ = (phT-pi(~ = H))exp -aT(H-z),  

where (6.24 c )  

When treating the time-dependent behaviour of pI  we may split the solution in a 
way similar to (6 .23a) .  For the interior part pi ,  we obtain immediately 

(6.25) 

wherepi(z, t = co) is identical to the steady solution given by (6 .23b) .  

6 .5 .  Further discussion of the case 1 < s,L < E$ 
Let us now recapitulate the physical picture we have found in the case sv L 9 1. 
The system may be divided into three regions according to figure 4.  In  I, the 
density field is determined by equation (6 .23b) .  In  this region the diffusion- 
associated vertical velocity in the interior gives rise to a negligible contribution to 
the vertical volume transport, and consequently the net boundary-layer transport 
(MB)  has to vanish in a steady state. This means that pI adopts the value which 
makes this possible for each level individually. 

The thickness of region I1 is of order (L/sv)4, which is precisely small enough 
for vertical diffusion to balance the vertical advection of an interior flux whose 
order of magnitude equals that of the flux carried by the buoyancy layer. If we 
decrease the thickness of the vertical boundaries and thus increase sv the buoy- 
ancy-layer flux increases and consequently the thickness of region I1 decreases. 
Furthermore, in region 11, the interior density distribution adjusts to the bound- 
ary condition at  the top and bottom, which is possible because vertical diffusion 
can effect the density field in this region. 
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Finally, we have region 111, which contains the degenerate horizontal boundary 
layer. This region supports the flux carried to the corners by the buoyancy layers, 
communicates flow from one corner to another, and distributes evenly the net 
flux supplied by the buoyancy layer over the horizontal cross-section before 
feeding it back into region 11. 

For the same physical reasons, nested diffusive regions like I1 and I11 can also 
occur a t  interior levels z where p: as given by (6.233) has a discontinuity. If pi is 
continuous but contains discontinuous individual terms, only a region like I11 
will occur at the corresponding level. 

7. A laboratory experiment 
A simple experiment has been carried out in order to test the qualitative results 

illustrated in figure 4. The experimental fluid was confined between two constant- 
temperature baths. The thickness of the wall facing the cold bath increased 
linearly with height while the thickness of the opposite wall, facing the hot bath 
decreased with height. The mean thickness of these vertical boundaries, which 
were made of Plexiglass, was chosen sufficiently small for (6.22) to be valid, and 
consequently region 1 was expected to i l l  the major part of the fluid system. 
The observations demonstrated the existence of a stably stratified almost stag- 
nant interior enclosed by laminar boundary layers. Furthermore, the time 
required for the interior temperature distribution to come to equilibrium was 
much shorter than the purely diffusive scale, as predicted by (4.17) when sL B 1. 

The vertical distribution of temperature was measured with a thermistor 
arrangement. With the cold bath a t  20°C and the hot at 40"C, the fluid tempera- 
ture varied from about 24 "C at the bottom to about 31 "C at the top of the region. 
No horizontal temperature variation could be detected outside the buoyancy 
layers. Since the boundary condition particularly at the walls facing the surround- 
ing air was not accurately known, a quantitative comparison with (6.233) is not 
appropriate, but the qualitative agreement seems reasonable. The fluid motion 
was visualized by means of the technique described by Baker (1966) (see figure 5, 
plate 1). 

In  this experiment the upper boundary was simply a free surface facing the 
surrounding air. Consequently the fluid was slightly cooled from above which 
means that the temperature gradient had to change signs, or at least tend to 
zero, somewhere close to the top of the system. This means that our description 
breaks down at least locally (for example the boundary-layer transport formally 
tends to infinity when apT/az = 0 according to (4.9)). The observations also 
showed a somewhat irregular behaviour in the uppermost part of the fluid region. 
However, this irregularity did not seem to influence the behaviour of the major 
part of the system (i.e. region I in figure 4). This provides additional support for 
the idea that, when s,L < 1, the upper and lower boundary conditions need not 
be of crucial importance, if the stably stratified interior is the region of interest in 
a particular experiment. 
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8. Concluding remarks 
The analysis of $$2-4 reduces the problem of finding the interior density field 

pl(z , t )  to solving (4.14). For containers with flat horizontal portions the corre- 
sponding boundary layer often need not be considered in detail. Suficient 
conditions for this, in the case of thermally uniform flat portions, are summarized 
at the end of $6.2 and illustrated via the experimentally important cases of $0 6.3 
and 6.4. 

8.1. Summary of conditions for validity of the general theory of $5 2-4 

Among the basic restrictions we have imposed on our fluid system are the postu- 
late (2.4) that temperature differences in the interior should be comparable with 
those imposed exterior to the finitely conducting boundary, i.e. 

p' N p .  ( 8 . 1 ~ )  

To this condition we now add another qualitative condition on p', namely 

aprlaz < 0, ( 8 . l b )  

which follows from the requirement that the solution has to be gravitationally 
stable, if the prediction is to be physically meaningful. We cannot expect (8.1 b )  
to appear from the analysis; gravitational instability is ruled out when we 
assume hydrostatic balance in the interior (2.8). 

The basic restrictions on the parameters of the system are given by (2.7) and 
(3.9). These can be conveniently restated using relations ( 3 . 1 3 ~ )  and (3.14) found 
during the analysis. We obtain 

EN< ( 8 . 2 ~ )  

sL < E;t, (8.2b) 

1~ ( 8 . 2 ~ )  

where it will be recalled that EN = v/NL2, 8, = ( T N ) - ~ ( N  is the buoyancy 
frequency and T the timescale), s is the conductance parameter in the thermal 
boundary condition n. V p  = s(p - p ) ,  L is a scale for the size of the container, 
and a is the Prandtl number. 

Equation ( 8 . 2 ~ )  gives rise to the boundary-layer character of the fluid system, 
in that it limits the strength of diffusion of momentum and heat. 

Equation (8.26) limits the heat flux through the boundary of the region, which 
means limiting the strength with which the fluid system is driven. Equation 
(8.2 b )  originally appeared from the need to linearize the heat balance in the buoy- 
ancy layer. The relation (3.14) between sL and R N  subsequently obtained shows 
however that (8.2 b)  is also a sufficient condition for our original restriction on RN 
(2.7) to be fulfilled, ensuring hydrostatic balance in the interior, and linear 
momentum balance in the boundary layer. 

Equation (8.2 c) requires that the characteristic forcing frequency should be 
much smaller than the buoyancy frequency. Equation (8.2d), finally, has been 
adopted essentially for convenience. The analysis can easily be generalized to 
many cases involving large or small a. 

a - 1, (ma)  
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We have also imposed a geometrical condition ($2, before (2.9a)) namely that 
each horizontal cross-section of the region should be a connected surface. (An 
extension to more general shapes would in general involve detached horizontal 
shear layers; compare $6.5). In summary, this geometrical condition together 
with (8.1) and (8.2) is sufficient for formal validity of the analysis of $$2-4. 
While (8.2) is expressed in terms of quantities known a priori, (8.1) must be 
checked a posteriori when a particular solution has been obtained. 

8.2. Implications for laboratory experiments 
Equations (4.15), (6.23b) and (6.25) describing the density field in the main part 
of the region, are powerful tools for experimental work since the interior density 
distribution may be adjusted to whatever stable distribution is needed. Further- 
more, the time required for the steady solution to re-establish itself, when the 
system has been perturbed, may be controlled simply by choosing a suitable mean 
thickness of the vertical boundaries. Observe that i t  is sufficient to allow the 
boundary thickness to vary with z in order to obtain a prescribed stratification. 
Consequently it is sufficient for most purposes to have two constant-tempera- 
ture baths available. 

Note also that the method of imposing a vertical temperature difference 
directly via conducting top and bottom boundaries is comparatively inconvenient 
in the laboratory when EN < 1. This is because the adjustment time is the diffu- 
sion time, and the requirement on the insulating sidewalls is exceedingly stringent, 
viz. (6.19). 

8.3. Purther discussion of the validity of the basic approximations 
Table 1 indicates that condition (8 .2b)  (expressed in the form (3.106)) is some- 
times a rather aerious restriction, and thus it is of interest to discuss the error we 
make if this condition is violated. Equation (8 .2b)  is the basis for two simplifka- 
tions in the treatment of the boundary layer, namely the linearization of 
Np = v. V p  in equation (3.2) and the neglect of p B  (not 8pB/ac)  in the thermal 
boundary condition (3.3b). The first approximation is vital for the success of the 
analysis, while the latter was adopted merely for reasons of consistency. 

The error associated with the linearization of Np, however, is not too serious 
even when sL 2 E$. Actually both Gill (1966) and McIntyre (1968) ob- 
tained quite good results in the case sL = co even though departures from the 
linearized form of Np were taken account of only crudely. The reason for this is 
that even when sL = 00 the linear contribution to Np is still an important term 
in the heat balance as long as pI 2 pB,  pr being the interior density field and p B  
the boundary-layer contribution to the density field. That is, only when the 
interior is essentially homogeneous does the ' linear' term vB. VpI become un- 
important. 

The error in the boundary-layer flux created by the linearization of Np may 
be estimated by an iterative procedure and becomes approximately 
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Q̂  and Q being the scale of density variation inJhe boundary condition and the 
interior respectively. We can see that as long as &I& N 1 the error does not exceed 
25 yo for any value of sL. The most iytportant condition for the linearization to 
be qualitatively useful is in fact that QIQ is not too large. 

The author wishes to thank Professor Bert Bolin, Mr Sven Grahn, Dr Michael 
E. McIntyre and a referee for the paper for their helpful comments on the manu- 
script, Miss Inger Albrecktsson for preparing the drawings and Mr Sven b. Odh 
for arranging the experiment. This paper is contribution no. 225 from the Inter- 
national Meteorological Institute in Stockholm. 
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FIGURE 5. Picture of a dye line distorted by the flow in the boundary layer along the cold 
wall. The picture was taken about 90 sec after the dye line around the lower of the two thin 
platinum threads were created. The weak counterflow in the outer part of the boundary 
layer is visible, though an irrelevant distortion of the dye created by the presence of the 
thread disturbs the picture. The distance between the two threads was close to 5 nun. The 
mirror image of the dye line, visible in the lower part of the picture, indicates the position 
of the Plexiglass wall. The threads were situated about halfway between the containers 
top and bottom. 
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